• Product
  • Supplier
  • Inquiry
    Home > Fraunhofer Researchers Produce Bio-based Chemicals using Fungi for Cosmetic good

    Fraunhofer Researchers Produce Bio-based Chemicals using Fungi for Cosmetic good

    Cosmetics Business 2019-02-13


    Using Renewable Raw Materials

    If you find a layer of blue-green mold covering your bread, fruit or something else from your pantry, you’ll quite rightly end up throwing it out with the garbage – fungi are after all harmful to your health. Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart, however, are particularly keen on molds, and in particular the genus Aspergillus. They’re also enthusiastic about yeast and smut fungi. Why? “Fungi have long been indispensable for antibiotic production or in the food industry. The fungi we employ help us to synthesize a variety of chemicals in a CO2-neutral way. They’re the basis for detergents, emulsifiers, cosmetics and pharmaceuticals, pesticides, and plastics,” says Prof. Steffen Rupp, deputy director of Fraunhofer IGB and head of the Department of Molecular Biotechnology.

    In contrast to petroleum, extracting chemicals from renewable raw materials doesn’t release CO2 into the atmosphere. And using fungi as production organisms has another major advantage: The pool of potential production organisms is almost inexhaustible, as is the range of renewable raw materials they can convert. As the fungi employ a host of different metabolic pathways, they produce an astonishing variety of products, which can be used in a wide range of applications.

    From Malic Acid to Bio-Surfactants and Polyesters

    Researchers at Fraunhofer IGB produce a wide variety of chemicals using fungi. One example is malic acid. There is a continually growing market for the substance, which gives products such as jams and juices a sour taste and improves the shelf life of baked goods. It can also be used as a building block for bio-based polyesters. And, in a process similar to brewing beer, it can be produced using molds. In beer brewing, the yeast ferments the malt sugar of the barley, while in malic acid production Aspergillus fungi convert sugar or vegetable oils.

    This can be done by “feeding”, for instance, a wood-based sugar solution to the fungi to get them to generate malic acid. Fermentation like this works well on a laboratory scale. The IGB researchers are currently investigating ways to scale up the process for commercialization, in particular, by improving the fermentation yield.

    Using a similar process, they can also create surface-active agents that can be used to produce detergents, emulsifiers, active ingredients for cosmetics, pharmaceutics, and pesticides. That’s where the smut fungi come into play. They’re parasites that infest plants, making them look like they’ve been burned – hence their Germanic name, Brandpilze [burnt fungi]. “The process is another one we’re actively developing for industrial production. Our principal goal is to optimize the composition of the biosurfactants we produce to suit various applications in the field of detergents and emulsifiers,” explains Dr. Susanne Zibek, head of the Industrial Biotechnology Group.

    Yeasts are also interesting producers. In addition to brewing beer, as previously mentioned, certain yeasts can also be used to produce molecules that are essential for synthesizing novel plastics, such as long-chain dicarboxylic acids. The researchers at Fraunhofer IGB have succeeded in working out a process to produce long-chain dicarboxylic acids from a strain of Candida.

    Share to:
    Disclaimer: Echemi reserves the right of final explanation and revision for all the information.
    Send Message