Home > Catalyst and Auxiliary > Polymer (Find 295 items)


Polyvinyl chloride

Poly(vinyl chloride), softened with a plasticizer such as esters, is used for making vinyl leather (used for handbags, briefcases, and inexpensive shoes), plastic raincoats, shower curtains, garden hoses, floor covering, and automobile upholstery.
PVC's relatively low cost, biological and chemical resistance and workability have resulted in it being used for a wide variety of applications. It is used for sewerage pipes and other pipe applications where cost or vulnerability to corrosion limit the use of metal. With the addition of impact modifiers and stabilizers, it has become a popular material for window and door frames. By adding plasticizers, it can become flexible enough to be used in cabling applications as a wire insulator. It has been used in many other applications.
Roughly half of the world's polyvinyl chloride resin manufactured annually is used for producing pipes for municipal and industrial applications . In the water distribution market it accounts for 66 % of the market in the US, and in sanitary sewer pipe applications, it accounts for 75 % . Its light weight, low cost, and low maintenance make it attractive. However, it must be carefully installed and bedded to ensure longitudinal cracking and overbelling does not occur. Additionally, PVC pipes can be fused together using various solvent cements, or heat-fused (butt-fusion process, similar to joining HDPE pipe), creating permanent joints that are virtually impervious to leakage.
2.Electric cables
PVC is commonly used as the insulation on electrical cables; PVC used for this purpose needs to be plasticized.
Unplasticized polyvinyl chloride (uPVC) for construction
uPVC, also known as rigid PVC, is extensively used in the building industry as a low-maintenance material, particularly in Ireland, the United Kingdom, and in the United States. In the USA it is known as vinyl, or vinyl siding . The material comes in a range of colors and finishes, including a photo - effect wood finish, and is used as a substitute for painted wood, mostly for window frames and sills when installing double glazing in new buildings, or to replace older single-glazed windows. Other uses include fascia, and siding or weatherboarding. This material has almost entirely replaced the use of cast iron for plumbing and drainage, being used for waste pipes, drainpipes, gutters and downspouts. uPVC does not contain phthalates, since those are only added to flexible PVC, nor does it contain BPA. uPVC is known as having strong resistance against chemicals, sunlight, and oxidation from water.
3.Clothing and furniture
PVC has become widely used in clothing, to either create a leather-like material or at times simply for the effect of PVC. PVC clothing is common in Goth, Punk, clothing fetish and alternative fashions. PVC is cheaper than rubber, leather, and latex which it is therefore used to simulate.
The two main application areas for medically approved PVC compounds are flexible containers and tubing: containers used for blood and blood components for urine or for ostomy products and tubing used for blood taking and blood giving sets, catheters, heartlung bypass sets, haemodialysis set etc. In Europe the consumption of PVC for medical devices is approximately 85.000 tons every year. Almost one third of plastic based medical devices are made from PVC.
Flexible PVC flooring is inexpensive and used in a variety of buildings covering the home, hospitals, offices, schools, etc. Complex and 3D designs are possible due to the prints that can be created which are then protected by a clear wear layer. A middle vinyl foam layer also gives a comfortable and safe feel. The smooth, tough surface of the upper wear layer prevents the build up of dirt which prevents microbes from breeding in areas that need to be kept sterile, such as hospitals and clinics.
6.Other applications
PVC has been used for a host of consumer products of relatively smaller volume compared to the industrial and commercial applications described above. Another of its earliest mass-market consumer applications was to make vinyl records. More recent examples include wallcovering, greenhouses, home playgrounds, foam and other toys, custom truck toppers (tarpaulins), ceiling tiles and other kinds of interior cladding.

Poly Methyl Methacrylate

1. Biomedical
PMMA has been used in the area of biomedical applications, which involves the preparation of bone cements for drug delivery/release and cranioplasty. The qualities that made the polymer a potential material for these applications include: non-toxicity, less cost, easy processability, compatibility, minimal inflammatory reactions with tissues, and greater fracture resistance, especially when used in cranioplasty.
PMMA has also been used to widen the applications of chitosan in various fields that include biomedical and pharmaceutical applications. Zuhair et al. reported the successful grafting of a PMMA/chitosan blend. The results indicated an increase in the mechanical properties, such as tensile strength and flexural modulus. The degradation, porosity, and water absorbency of the blend in synthetic body fluid (SBF) with a pH of 7.4 increased with an increase in the chitosan percentage and immersion time in SBF. These behaviors exhibited by the PMMA/chitosan blend illustrate its potentials for drug release applications.
2.Molecular Separation
Molecular separations in chemistry can be achieved in an advanced way by the use of chromatographic techniques, which involve the use of a stationary phase (inert solid support) and mobile phase (usually solvent or mixture of solvents). The common solid supports used are inorganic materials such as silica and alumina, but they have low patronage due to their disadvantages in separating some organic molecules, and limited modifications for maximum efficiency. Therefore, both natural and synthetic polymers have recently been used to replace the inorganic materials. PMMA is the most promising synthetic polymer for applications in molecular separation due to its low cost, compatibility, ease of modification, and processability.
3.Optical applications
Optical science is relevant and studied in many disciplines, including engineering, medicine, pure science, and astronomy. Practical applications are found in lenses, microscopes, lasers, fibers, and polymers, to name a few. The optical activity of any material is the result exhibited by that material when interacting with light and the refractive index is the measure of that activity. The optical applications of PMMA are due to its refractive index, good resistance to UV light, chemical durability, and good mechanical properties.
Organic polymers are usually cheap, lightweight, and easily processed substrates, and are therefore good for immobilizing semiconductors for heterogeneous photocatalytic applications. Camara et al. revealed the investigation of eleven synthetic polymers susceptible to coating with TiO2 for exposure to solar radiation, with and without the TiO2 layer, for 150 days to study the weathering. They observed that only the PMMA retains good optical and mechanical properties of the Titania after natural weathering. Therefore, PMMA is the best candidate for the immobilization of TiO2 for photocatalytic treatment applications.
4.Polymer conductivity and electrolytes
Most polymers are electrical insulators. However, conducting polymers can be prepared using an insulating polymer and electrically conductive fillers called dopants. The electrical properties of PMMA doped with conducting materials under various experimental conditions including photo-induced changes, has been studied. PMMA was used as an organic insulator, while the PVA-PAA-glycerol was a semiconducting polymer. Aluminum electrodes were used as bottom and top electrodes for the fabricated devices. Finally, organic memory devices were prepared based on the Au-PtAg nanoparticles as charge storage elements. Herein, PMMA was used as the organic insulator.
A polymer electrolyte membrane for battery application must play the following roles: must enable positive ion transport such as Li+ between the electrodes, must block the electron transport, and must be rigid to prevent direct contact between the electrodes. The application of PMMA in the polymer electrolyte was due to the amorphous nature for porosity’s sake and the mechanical strength it has for the provision of the rigidity to the polymer electrolyte membrane.
5.Sensor application
In search of the production of a quasi-solid-state dye-sensitized solar cell (DSSC) using a high conductivity polymer gel electrolyte, a suitable polymeric material was needed to be a host matrix in the composite. Therefore, PMMA was found to be a good and compatible polymer for this purpose. This was attributed to its mechanical strength, compatibility, and optical clarity.
6.Solar and nanotechnology applications
Due to the wider application of nanocomposites in the field of nanotechnology, many researchers focused their attention on nanocomposites, their fabrication, and applications. Perween et al. reported the use of PMMA and graphite to fabricate plastic chip electrodes (PCEs) via a simple solution casting method. This characterization was made using microscopy (SEM and AFM) as well as thermal properties (TGA), and mechanical and electrical properties. The fabricated electrode was economically inexpensive, multipurpose, and dispensable for various applications.

Polyparpylene Fiber

Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications including packaging and labeling, textiles (e.g., ropes, thermal underwear and carpets), stationery, plastic parts and reusable containers of various types, laboratory equipment, loudspeakers, automotive components, and polymer banknotes. An addition polymer made from the monomer propylene, it is rugged and unusually resistant to many chemical solvents, bases and acids.Polypropylene has a relatively slippery "low energy surface" that means that many common glues will not form adequate joints. Joining of polypropylene is often done using welding processes.In 2013, the global market for polypropylene was about 55 million metric tons.


Used for making shirts, bedding, tablecloths, work clothes, etc.; used for optical disc substrate materials. Used as electronic and electrical parts, machinery and textile industry parts, building structural parts, aviation transparent materials and parts, foam structural materials, etc.

Acrylic Acid-2-Acrylamido-2-Methylpropane Sulfonic Acid Copolymer

AA/AMPS is mainly used for scale inhibition and dispersion of open industrial circulating cooling water system, oilfield sewage reinjection system, metallurgical system circulating water treatment, steel plant leaching cooling water to prevent Fe2O3 slime deposition, AA/AMPS can be combined with organic phosphine Combined use of acid salt and zinc salt, suitable for pH conditions of 7.0 to 9.5. AA/AMPS can also be used as textile printing and dyeing auxiliary. Used in organic chemical intermediates such as pesticides, medicines, dyes, etc.

Ethylene-Vinyl Acetate Copolymer

Adhesive bonding clothing fusible interlining, foam plastic and artificial leather, carpet backing, etc. Used as a variety of films, foamed products, hot melt adhesives and polymer modifiers; used in the production of films, injection molded products, hot melt adhesives, wires and cables, etc.; mainly used to prepare coatings and adhesives; mainly used in construction Finishing of interior and exterior walls of objects.

Poly (Tetrafluoroethylene)

Tubing & sheets for chemical laboratory & process work, lining reaction vessels, gaskets & pump packings, sometimes mixed with graphite, electrical insulator especially in high frequency applications, filtration fabrics, protective clothing.

Polyester Chip

Used in electrical parts including relay bases and lamp sockets, pump housings, gears, sprockets, chair arms, casters and furniture components. The first stage to produce Polyethylene Terephthalate (PET) is the reaction of ethylene glycol with terephthalic acid or dimethyl terephthalate. After the initial reaction, two or three polymerization steps are then performed, depending on the required molecular weight. The chemical structure of PET is composed of repeated units. Each unit has a physical length of about 1.09 nm and a molecular weight of ~200. PET monomer consists from an aromatic ring coupled with a short aliphatic chain that makes PET a stiff molecule as compared to other aliphatic polymers such as polyolefin or polyamide. The lack of segmental mobility in the polymer chains results in relatively high thermal stability. A textile grade polymer will have an average number of 100 repeat units per molecule so that the extended length of the typical polymer chain is about 100 nm with a molecular weight of ~20,000. Higher levels of polymerization produce higher strength fibers but the melt viscosity and stability of the melt to even tiny amounts of moisture causes hydrolytic degradation.
Photo-degradation of PET occurs after exposure to near-ultraviolet light resulting in either chain scission by Norrish I and II reactions. Cross-linking also takes place and polymer becomes brittle, discolored, and with uneven surface. PET when exposed to UV light degrades rather rapidly leading to deterioration in physical and mechanical properties and develops intense yellow color. It has been suggested that the photo-oxidation of PET involves the formation of hydroperoxide species through oxidation of the CH2 groups adjacent to the ester linkages and the hydroperoxide species involving the formation of photoproducts through several pathways. The ester moieties in the terephthalate moiety as well as CH2 groups are strongly involved in the photo-degradation of PET. The vinyl ester ends also act as cross-linkers and gelling agents. They polymerize and the polymers thermally degrade to give yellow or brown polyenes that discolor the final polymer. The formation of highly conjugated species is catalyzed by carboxyl groups. The formation of colored species is followed by increase of more carboxyl terminated species. Hence, the product having higher carboxyl value is subject to more discoloration. Furthermore, as the carboxyl content increases, the thermo-oxidative stability decreases. The carboxyl end groups act as catalysts for further degradation.

ABS Resins

Used in automobiles, electronics, electrical appliances, machinery, textiles, railways and other industries; used in the preparation of various parts of meters, electrical, electrical appliances, machinery, etc.; used in 12-inch black-and-white TV sets and color motor boxes; used as automotive industrial materials and building materials , Wood substitutes, and used to make safety helmets, suitcases, appliance shells, foam plastics, etc.
Polymers generally refer to high molecular compounds, which are referred to as macromolecules or macromolecules. They generally refer to compounds with a relative molecular mass of up to several thousand to several million. mixture. According to the source, it can be divided into two categories: natural polymers and synthetic polymers. According to the performance classification, it can be divided into three categories: plastic, rubber and fiber. ""Polymer"" on ECHEMI mainly supplies raw materials for Polymer.
Send Message