Product
  • Product
  • Supplier
  • Inquiry

    EN

    Home > Carbonicaciddihexylester
    Carbonicaciddihexylester structure

    Carbonicaciddihexylester

    • CAS No:

      7523-15-1

    • Formula:

      C13H26O3

    • Synonyms:

      Dihexyl carbonate;Carbonic acid, dihexyl ester;Carbonic acid dihexyl ester;Di-n-hexyl carbonate;SCHEMBL37591;CTK2G9266;DTXSID40335005;ZINC32155810;(n-C6H13)OC(O)O(n-C6H13);AK656116

    Request for Quotation

    Basic Attributes

    • 7523-15-1

    • C13H26O3

    • 230.34

    • 230.188

    • 35.5

    • 5.2

    • OKQDSOXFNBWWJL-UHFFFAOYSA-N

    • 3

    • 0

    • 0.92

    • 12

    Characteristics

    • 284.1°C at 760 mmHg

    Safety Information

    Production Methods

    General procedure: All the reactions were carried out in an autoclave reactor withan inner volume of 190 ml. A typical procedure of the reaction of COInto a two-necked flask equipped with a condenser was inserted an injection tube which had connected thereto a glass ball filter (G2) (manufactured and sold by Vidrex Co., Ltd., Japan). Further, a stirrer was placed in the flask. Into the two-necked flask were charged 0.75 g of the above-obtained liquid (containing an organometal compound) and 41 g of n-hexanol. Then, introduction of a high purity carbon dioxide gas into the flask through the injection tube was started at a flow rate of 100 ml/min. The flask was heated using an oil bath (which was maintained at 130 °C) while stirring the contents of the flask and introducing a high purity carbon dioxide gas into the flask, thereby producing dihexyl carbonate. 288 hours after the start of the heating of the flask, the yield of dihexyl carbonate was 40 percent.Production of dihexyl carbonate from dibutyltin dihexyloxide Into a 100-ml autoclave (manufactured and sold by Toyo Koatsu Co., Ltd., Japan) were charged about 2.2 g of an organometal compound containing about 5 mmol of dibutyltin dihexyloxide (wherein the organometal compound was contained in the above-obtained reaction mixture) and 25.5 g (250 mmol) of hexanol (manufactured and sold by Aldrich, U.S.A.; a dehydrated grade). The autoclave was sealed. Then, from a carbon dioxide gas bomb, carbon dioxide gas, the pressure of which was lowered to 4 MPa by means of a pressure regulator connected to the carbon dioxide gas bomb, was introduced into the autoclave. Stirring of the contents of the autoclave was started. 10 Minutes after the start of the stirring, the valve of the carbon dioxide gas bomb was closed. Then, the internal temperature of the autoclave was elevated to 120 °C while stirring. Thereafter, carbon dioxide gas was gradually withdrawn from the autoclave through a purge line so as to adjust the internal pressure of the autoclave to 4 MPa. Then, a reaction was performed for 100 hours while maintaining the internal pressure of the autoclave at 4 MPa. After that period, the inside of the autoclave was cooled to about 30 °C, and the internal pressure of the autoclave was returned to atmospheric pressure by gently purging the carbon dioxide gas through a purge line, and there was obtained a transparent reaction mixture. In the reaction mixture, dihexyl carbonate was obtained in a yield of 18 percent.Into a 100-ml autoclave (manufactured and sold by Toyo Koatsu Co., Ltd., Japan) were charged about 2.2 g of an organometal compound containing about 5 mmol of dibutyltin dihexyloxide (wherein the organometal compound was contained in the above-obtained reaction mixture) and 25.5 g (250 mmol) of hexanol (manufactured and sold by Aldrich, U.S.A.; a dehydrated grade). The autoclave was sealed. Then, from a carbon dioxide gas bomb, carbon dioxide gas, the pressure of which was lowered to 4 MPa by means of a pressure regulator connected to the carbon dioxide gas bomb, was introduced into the autoclave. Stirring of the contents of the autoclave was started. 10 Minutes after the start of the stirring, the valve of the carbon dioxide gas bomb was closed. Then, the internal temperature of the autoclave was elevated to 120 °C while stirring. Thereafter, carbon dioxide gas was gradually withdrawn from the autoclave through a purge line so as to adjust the internal pressure of the autoclave to 4 MPa. Then, a reaction was performed for 100 hours while maintaining the internal pressure of the autoclave at 4 MPa. After that period, the inside of the autoclave was cooled to about 30 °C, and the internal pressure of the autoclave was returned to atmospheric pressure by gently purging the carbon dioxide gas through a purge line, and there was obtained a transparent reaction mixture. In the reaction mixture, dihexyl carbonate was obtained in a yield of 17 percent.Into the above-mentioned 200-ml autoclave containing the reaction mixture (containing an organometal compound having a hexyloxy group) was charged 61.5 g (602 mmol) of hexanol (manufactured and sold by Aldrich, U.S.A.; a dehydrated grade), and the autoclave was sealed. Then, from a carbon dioxide gas bomb, carbon dioxide gas, the pressure of which was lowered to 5 MPa by means of a pressure regulator connected to the carbon dioxide gas bomb, was introduced into the autoclave. Stirring of the contents of the autoclave was started. 10 Minutes after the start of the stirring, the valve of the carbon dioxide gas bomb was closed. Then, the internal temperature of the autoclave was elevated to 180 °C while stirring. In this instant, the internal pressure of the autoclave was about 7.5 MPa. Then, a reaction was performed for 6 hours while maintaining the internal pressure of the autoclave at about 7.5 MPa. Thereafter, the inside of the autoclave was cooled to about 30 °C and the internal pressure of the autoclave was returned to atmospheric pressure by gently purging the carbon dioxide gas, and there was obtained a transparent reaction mixture. In the reaction mixture, dihexyl carbonate was obtained in a yield of about 14 percent.Subsequently, the same procedures as in step (1) and step (2) were successively performed as follows. Step (1): Production of dihexyl carbonate from the organometal compound obtained in step (3) Into the above-mentioned autoclave in which step (3) was performed was charged 61.5 g (602 mmol) of hexanol (manufactured and sold by Aldrich, U.S.A.; a dehydrated grade), and the autoclave was sealed. Then, from a carbon dioxide gas bomb, carbon dioxide gas, the pressure of which was lowered to 5 MPa by means of a pressure regulator connected to the carbon dioxide gas bomb, was introduced into the autoclave. Stirring of the contents of the autoclave was started. 10 Minutes after the start of the stirring, the valve of the carbon dioxide gas bomb was closed. Then, the internal temperature of the autoclave was elevated to 180 °C while stirring. In this instant, the internal pressure of the autoclave was about 7.5 MPa. Then, a reaction was performed for 6 hours while maintaining the internal pressure of the autoclave at about 7.5 MPa. Thereafter, the inside of the autoclave was cooled to about 30 °C and the internal pressure of the autoclave was returned to atmospheric pressure by gently purging the carbon dioxide gas through the purge line, and there was obtained a transparent reaction mixture. In the reaction mixture, dihexyl carbonate was obtained in a yield of about 14 percent.The reaction apparatus was the same as in Example 1. Take 10g urea, 68g n-hexanol, 0.5g nickel acetate, 2g triphenylphosphine in a three-neck bottle, heat in 170 ° C oil bath, vacuum, system vacuum 10Kpa, system maintain 140 ° C, slightly boiling, stirring reflux Reaction for 20 hr.Gas chromatography analysis showed that the yield of di-n-hexyl carbonate was 92.3percent based on the amount of urea charged.After step (1), 10 g of hexanol containing 1 percent by weight of water was gently added to the reaction mixture obtained in step (1), and the resultant mixture was stirred for about 30 minutes. Then, the autoclave was opened, and it was found that the mixture in the autoclave had turned into a white slurry. The white slurry was subjected to filtration using a membrane filter (H020A142C, manufactured and sold by Advantec Toyo Kaisha, Ltd., Japan) to thereby obtain white solids and a filtrate. The white solids were washed 2 times with 20 ml of hexanol. The filtrate was transferred into a 1-liter eggplant-shaped flask and subjected to distillation under heating. By the distillation, hexanol and dihexyl carbonate were recovered. The yield of dihexyl carbonate was 17 percent.After step (1), 10 g of hexanol containing 1 percent by weight of water was gently added to the reaction mixture obtained in step (1), and the resultant mixture was stirred for about 30 minutes. Then, the autoclave was opened, and it was found that the mixture in the autoclave had turned into a white slurry. The white slurry was subjected to filtration using a membrane filter (H020A142C, manufactured and sold by Advantec Toyo Kaisha, Ltd., Japan) to thereby obtain white solids and a filtrate. The white solids were washed 2 times with 20 ml of hexanol. The filtrate was transferred into a 1-liter eggplant-shaped flask and subjected to distillation under heating. By the distillation, hexanol and dihexyl carbonate were recovered. The yield of dihexyl carbonate was 16 percent.After step (1), 10 g of hexanol containing 1 percent by weight of water was gently added to the reaction mixture obtained in step (1), and the resultant mixture was stirred for about 30 minutes. Then, the autoclave was opened, and it was found that the mixture in the autoclave had turned into a white slurry. The white slurry was subjected to filtration using a membrane filter (H020A142C, manufactured and sold by Advantec Toyo Kaisha, Ltd., Japan) to thereby obtain white solids and a filtrate. The white solids were washed 2 times with 20 ml of hexanol. The filtrate was transferred into a 1-liter eggplant-shaped flask and subjected to distillation under heating in an oil bath at 150 °C and under a pressure of 1 KPa. By the distillation, hexanol and dihexyl carbonate were recovered. The yield of dihexyl carbonate was 13 percent.After step (1), 10 g of hexanol containing 1 percent by weight of water was gently added to the reaction mixture obtained in step (1), and the resultant mixture was stirred for about 30 minutes. Then, the autoclave was opened, and it was found that the mixture in the autoclave had turned into a white slurry. The white slurry was subjected to filtration using a membrane filter (H020A142C, manufactured and sold by Advantec Toyo Kaisha, Ltd., Japan) to thereby obtain white solids and a filtrate. The white solids were washed 2 times with 20 ml of hexanol. The filtrate was transferred into a 1-liter eggplant-shaped flask and subjected to distillation under heating. By the distillation, hexanol and dihexyl carbonate were recovered. The yield of dihexyl carbonate was 13 percent.This example describes the preparation of dihexyl carbonate from propylene carbonate and hexanol. Propylene carbonate (1.02 g; 10 mmol), hexanol (100 mmol), catalyst (250 mg) were charged in a 100 ml stainless steal autoclave having a Teflon-liner. The autoclave was closed and then placed in a rotating synthesis reactor (Hiro Co., Japan, Model-KH 02, rotating speed=30 rpm). The reaction was conducted at 170° C. for 8 h. The contents were allowed to cool to room temperature. Catalyst was separated by filtration from the reaction mixture. The products were isolated and analyzed as described in Results are tabulated in table-2.EXAMPLE 8 This example describes the preparation of dihexyl carbonate from propylene carbonate and hexanol. Propylene carbonate (1.02 g; 10 mmol), hexanol (100 mmol), catalyst (250 mg) were charged in a 100 ml stainless steal autoclave having a Teflon-liner. The autoclave was closed and then placed in a rotating synthesis reactor (Hiro Co., Japan, Model-KH 02, rotating speed = 30 rpm). The reaction was conducted at 170 C for 8 h. The contents were allowed to cool to room temperature. Catalyst was separated by filtration from the reaction mixture. The products were isolated and analyzed as described in Results are tabulated in table-2.General procedure: EC (10 mmol), alcohol (100 mmol), and catalyst (5 wtpercent of EC) were taken in a Teflon-lined stainless-steel autoclave placed in a rotating hydrothermal reactor (Hiro Co., Japan; rotation speed = 50 rpm). Reactions were conducted at 40–100°C for 0.5–6 h. After completion of the reaction, the autoclave was cooled to 25°C, and the catalyst was separated by centrifugation/filtration. The liquid product was analyzed and quantified by gas chromatography (GC, Varian 3800; CP-SIL 5 column; 50 m × 0.25 mm × 0.25 m). The influence of reaction parameters (reaction time, reaction temperature, catalyst amount, and type of alcohol) on product yield was investigated. For comparison, experiments were also conducted with PC instead of EC. Those runs were carried out at 80–170°C.Dimethyl carbonate (3.06 g) and 1-hexanol (6.94 g) in a molar ratio of 1:2 were mixed together with in each case a constant quantity (5.7.x.10-6 mol) of a catalyst (see Table 1) in a 20 ml rolled flange glass vessel, which was closed with a natural rubber septum including a gas outlet. If the catalyst used was present at room temperature in solid aggregate state, it was first dissolved in one of the educts. The reaction mixture was heated for 6 hours to 80° C., with stirring. After cooling to room temperature, analysis of the product spectrum was performed by gas chromatography, optionally coupled with mass spectrometric examination. The reaction product contents, namely methylhexyl carbonate or dihexyl carbonate, which can be taken as a measure of the activity of the transesterification catalyst used, were quantified by integration of the respective gas chromatogramsDimethyl carbonate (3.06 g) and 1-hexanol (6.94 g) in a molar ratio of 1:2 were mixed together with in each case a constant quantity (5.7.x.10-6 mol) of a catalyst (see Table 1) in a 20 ml rolled flange glass vessel, which was closed with a natural rubber septum including a gas outlet. If the catalyst used was present at room temperature in solid aggregate state, it was first dissolved in one of the educts. The reaction mixture was heated for 6 hours to 80° C., with stirring. After cooling to room temperature, analysis of the product spectrum was performed by gas chromatography, optionally coupled with mass spectrometric examination. The reaction product contents, namely methylhexyl carbonate or dihexyl carbonate, which can be taken as a measure of the activity of the transesterification catalyst used, were quantified by integration of the respective gas chromatogramsDimethyl carbonate (3.06 g) and 1-hexanol (6.94 g) in a molar ratio of 1:2 were mixed together with in each case a constant quantity (5.7.x.10-6 mol) of a catalyst (see Table 1) in a 20 ml rolled flange glass vessel, which was closed with a natural rubber septum including a gas outlet. If the catalyst used was present at room temperature in solid aggregate state, it was first dissolved in one of the educts. The reaction mixture was heated for 6 hours to 80° C., with stirring. After cooling to room temperature, analysis of the product spectrum was performed by gas chromatography, optionally coupled with mass spectrometric examination. The reaction product contents, namely methylhexyl carbonate or dihexyl carbonate, which can be taken as a measure of the activity of the transesterification catalyst used, were quantified by integration of the respective gas chromatogramsDimethyl carbonate (3.06 g) and 1-hexanol (6.94 g) in a molar ratio of 1:2 were mixed together with in each case a constant quantity (5.7.x.10-6 mol) of a catalyst (see Table 1) in a 20 ml rolled flange glass vessel, which was closed with a natural rubber septum including a gas outlet. If the catalyst used was present at room temperature in solid aggregate state, it was first dissolved in one of the educts. The reaction mixture was heated for 6 hours to 80° C., with stirring. After cooling to room temperature, analysis of the product spectrum was performed by gas chromatography, optionally coupled with mass spectrometric examination. The reaction product contents, namely methylhexyl carbonate or dihexyl carbonate, which can be taken as a measure of the activity of the transesterification catalyst used, were quantified by integration of the respective gas chromatogramsDimethyl carbonate (3.06 g) and 1-hexanol (6.94 g) in a molar ratio of 1:2 were mixed together with in each case a constant quantity (5.7.x.10-6 mol) of a catalyst (see Table 1) in a 20 ml rolled flange glass vessel, which was closed with a natural rubber septum including a gas outlet. If the catalyst used was present at room temperature in solid aggregate state, it was first dissolved in one of the educts. The reaction mixture was heated for 6 hours to 80° C., with stirring. After cooling to room temperature, analysis of the product spectrum was performed by gas chromatography, optionally coupled with mass spectrometric examination. The reaction product contents, namely methylhexyl carbonate or dihexyl carbonate, which can be taken as a measure of the activity of the transesterification catalyst used, were quantified by integration of the respective gas chromatogramsInto the above-mentioned 200-ml autoclave containing the reaction mixture (containing an organometal compound having a hexyloxy group) was charged 61.5 g (602 mmol) of hexanol (manufactured and sold by Aldrich, U.S.A.; a dehydrated grade), and the autoclave was sealed. Then, from a carbon dioxide gas bomb which was connected to the autoclave through a SUS tube and a valve, carbon dioxide gas having a pressure of 5 MPa was introduced into the autoclave. Stirring of the contents of the autoclave was started. 10 Minutes after the start of the stirring, the valve of the carbon dioxide gas bomb was closed. Then, the internal temperature of the autoclave was elevated to 180 °C while stirring. In this instant, the internal pressure of the autoclave was about 7.5 MPa. Then, a reaction was performed for 6 hours while maintaining the internal pressure of the autoclave at about 7.5 MPa. Thereafter, the inside of the autoclave was cooled to about 30 °C and the internal pressure of the autoclave was returned to atmospheric pressure by gently purging the carbon dioxide gas, and there was obtained a transparent reaction mixture. In the reaction mixture, dihexyl carbonate was obtained in a yield of 14 percent.; Step (2) After step (1), 10 g of hexanol containing 1 percent of water was gently added to the reaction mixture obtained in step (1), and the resultant mixture was stirred for about 1 minute. Then, the autoclave was opened, and it was found that the mixture in the autoclave had turned into a white slurry. The white slurry was subjected to filtration using a membrane filter (H020A142C, manufactured and sold by Advantec Toyo Kaisha, Ltd., Japan) to thereby obtain white solids and a filtrate. The white solids were washed 2 times with 20 ml of hexanol. The filtrate was transferred into a 1-liter eggplant-shaped flask and subjected to a distillation under heating in an oil bath at 160 °C and under reduced pressure. By the distillation, hexanol, tributyltin hexyloxide and dihexyl carbonate were recovered as a distillate. The yield of dihexyl carbonate was 13 percent. It was found that the distillate contained about 2 mmol of tributyltin hexyloxide. On the other hand, a viscous liquid remained in the flask after completion of the distillation.The white solids obtained in step (2) and the residual viscous liquid which remained in the flask after the distillation performed in step (2), were charged into a 200-ml autoclave (manufactured and sold by Toyo Koatsu Co., Ltd., Japan). Further, 51.1 g (500 mmol) of hexanol (manufactured and sold by Aldrich, U.S.A.; a dehydrated grade) was charged into the autoclave, and the autoclave was sealed. The atmosphere in the autoclave was purged with nitrogen gas. Then, stirring of the contents of the autoclave was started, and the internal temperature of the autoclave was elevated to 160 °C. Then, the stirring was continued for about 30 minutes. Thereafter, the purge line of the autoclave was opened, and water and hexanol were distilled off through the purge line over 4 hours while blowing a small amount of nitrogen gas into the bottom of the autoclave. After that period, there was almost no distillate any more. Then, the inside of the autoclave was cooled to about 30 °C, and there was obtained a reaction mixture. 1H-, 13C- and 119Sn-NMR analyses of the reaction mixture was performed. The NMR analyses showed that the reaction mixture contained about 40 mmol of 1, 1, 3, 3-tetrabutyl-1, 3-di-hexyloxy-distannoxane, about 7 mmol of dibutyltin dihexyloxide and about 4 mmol of tributyltin hexyloxide. After step (3), step (1) was performed as follows. Into the above-mentioned autoclave in which step (3) was performed was charged 61.5 g (602 mmol) of hexanol (manufactured and sold by Aldrich, U.S.A.; a dehydrated grade). The autoclave was sealed. Then, from a carbon dioxide gas bomb which was connected to the autoclave through a SUS tube and a valve, carbon dioxide gas having a pressure of 5 MPa was introduced into the autoclave. Stirring of the contents of the autoclave was started. 10 Minutes after the start of the stirring, the valve of the carbon dioxide gas bomb was closed. Then, the internal temperature of the autoclave was elevated to 180 °C while stirring. In this instant, the internal pressure of the autoclave was about 7.5 MPa. Then, a reaction was performed for 6 hours while maintaining the internal pressure of the autoclave at about 7.5 MPa. Thereafter, the inside of the autoclave was cooled to about 30 °C and the internal pressure of the autoclave was returned to atmospheric pressure by gently purging the carbon dioxide gas through the purge line, and there was obtained a transparent reaction mixture. In the reaction mixture, dihexyl carbonate was obtained in a yield of 14 percent. After step (1), 10 g of hexanol containing 1 percent of water was gently added to the reaction mixture obtained in step (1), and the resultant mixture was stirred for about 1 minute. Then, the autoclave was opened, and it was found that the mixture in the autoclave had turned into a white slurry. The white slurry was subjected to filtration using a membrane filter (H020A142C, manufactured and sold by Advantec Toyo Kaisha, Ltd., Japan) to thereby obtain white solids and a filtrate. The white solids were washed 2 times with 20 ml of hexanol. The filtrate was transferred into a 1-liter eggplant-shaped flask and subjected to a distillation under heating in an oil bath at 160 °C and under reduced pressure. The resultant flask was subjected to distillation under heating and under reduced pressure. By the distillation, hexanol, tributyltin hexyloxide and dihexyl carbonate were recovered as a distillate. The yield of dihexyl carbonate was 13 percent. It was found that the distillate contained about 2 mmol of tributyltin hexyloxide.

    More

    Material and Products

    Suggestions
    Email:
    Message:
    Send Message